

DjangoRestMultipleModels

Django Rest Framework [https://github.com/tomchristie/django-rest-framework] provides some incredible tools for serializing data, but sometimes you need to combine many serializers and/or models into a single API call. drf-multiple-model is an app designed to do just that.

Installation

Install the package from pip:

pip install django-rest-multiple-models

Make sure to add ‘drf_multiple_model’ to your INSTALLED_APPS:

INSTALLED_APPS = (

 'drf_multiple_model',
)

Then simply import the view into any views.py in which you’d want to use it:

from drf_multiple_model.views import ObjectMultipleModelAPIView

Note: This package is built on top of Django Rest Framework’s generic views and serializers, so it presupposes that Django Rest Framework is installed and added to your project as well.

Contents:

	Usage
	Basic Usage

	Mixins

	Installation

	ObjectMultipleModelAPIView Options
	Labels

	FlatMultipleModelAPIView Options
	Labels

	sorting_field

	Filtering
	Django Rest Framework Filters

	Per Queryset Filtering

	Pagination
	Limit/Offset Pagination

	ViewSets

	Upgrading from 1.x to 2.0
	views/mixins split in two

	querylist is no longer camelCased

	querylist items are now dicts, not lists/tuples

	pagination uses custom-built paginators

	Release Notes
	2.0 (2018-01-18)

	1.8.1 (2017-12-20)

	1.8 (2016-09-04)

	1.7 (2016-06-09)

	1.6 (2016-02-23)

	1.5 (2016-01-28)

	1.3 (2015-12-10)

	1.2 (2015-11-11)

	1.1 (2015-07-06)

	1.0 (2015-06-29)

	Contributors
	Project Maintainer and Founder

	Contributors

Usage

Basic Usage

drf-multiple-model comes with two generic class-based-view for serializing multiple models: the ObjectMultipleModelAPIView and the FlatMultipleModelAPIView. Both views require a querylist attribute, which is a list or tuple of dicts containing (at minimum) a queryset key and a serializer_class key; the main difference between the views is the format of the response data. For example, let’s say you have the following models and serializers:

Models
class Play(models.Model):
 genre = models.CharField(max_length=100)
 title = models.CharField(max_length=200)
 pages = models.IntegerField()

class Poem(models.Model):
 title = models.CharField(max_length=200)
 style = models.CharField(max_length=100)
 lines = models.IntegerField()
 stanzas = models.IntegerField()

Serializers
class PlaySerializer(serializers.ModelSerializer):
 class Meta:
 model = Play
 fields = ('genre','title','pages')

class PoemSerializer(serializers.ModelSerializer):
 class Meta:
 model = Poem
 fields = ('title','stanzas')

Then you might use the ObjectMultipleModelAPIView as follows:

from drf_multiple_model.views import ObjectMultipleModelAPIView

class TextAPIView(ObjectMultipleModelAPIView):
 querylist = [
 {'queryset': Play.objects.all(), 'serializer_class': PlaySerializer},
 {'queryset': Poem.objects.filter(style='Sonnet'), 'serializer_class': PoemSerializer},

]

which would return:

{
 'Play' : [
 {'genre': 'Comedy', 'title': "A Midsummer Night's Dream", 'pages': 350},
 {'genre': 'Tragedy', 'title': "Romeo and Juliet", 'pages': 300},

],
 'Poem' : [
 {'title': 'Shall I compare thee to a summer's day?', 'stanzas': 1},
 {'title': 'As a decrepit father takes delight', 'stanzas': 1},

],
}

Or you coulde use the FlatMultipleModelAPIView as follows:

from drf_multiple_model.views import FlatMultipleModelAPIView

class TextAPIView(FlatMultipleModelAPIView):
 querylist = [
 {'queryset': Play.objects.all(), 'serializer_class': PlaySerializer},
 {'queryset': Poem.objects.filter(style='Sonnet'), 'serializer_class': PoemSerializer},

]

which would return:

[
 {'genre': 'Comedy', 'title': "A Midsummer Night's Dream", 'pages': 350, 'type': 'Play'},
 {'genre': 'Tragedy', 'title': "Romeo and Juliet", 'pages': 300, 'type': 'Play'},

 {'title': 'Shall I compare thee to a summer's day?', 'stanzas': 1, 'type': 'Poem'},
 {'title': 'As a decrepit father takes delight', 'stanzas': 1, 'type': 'Poem'},

]

Mixins

If you want to combine ObjectMultipleModelAPIView or FlatMultipleModelAPIViews’s list() function with other views, you can use their base mixins from mixins.py instead.

Installation

Install the package from pip:

pip install django-rest-multiple-models

Make sure to add ‘drf_multiple_model’ to your INSTALLED_APPS:

INSTALLED_APPS = (

 'drf_multiple_model',
)

Then simply import the view into any views.py in which you’d want to use it:

from drf_multiple_model.views import ObjectMultipleModelAPIView

Note: This package is built on top of Django Rest Framework’s generic views and serializers, so it presupposes that Django Rest Framework is installed and added to your project as well.

ObjectMultipleModelAPIView Options

Labels

By default, ObjectMultipleModelAPIView uses the model name as a label. If you want to use a custom label, you can add a label key to your querylist dicts, like so:

from drf_multiple_model.views import ObjectMultipleModelAPIView

class TextAPIView(ObjectMultipleModelAPIView):
 querylist = [
 {
 'querylist': Play.objects.all(),
 'serializer_class': PlaySerializer,
 'label': 'drama',
 },
 {
 'querylist': Poem.objects.filter(style='Sonnet'),
 'serializer_class': PoemSerializer,
 'label': 'sonnets'
 },

]

which would return:

{
 'drama': [
 {'genre': 'Comedy', 'title': "A Midsummer Night's Dream", 'pages': 350},
 {'genre': 'Tragedy', 'title': "Romeo and Juliet", 'pages': 300},

],
 'sonnets':[
 {'title': 'Shall I compare thee to a summer's day?', 'stanzas': 1},
 {'title': 'As a decrepit father takes delight', 'stanzas': 1},

],
}

FlatMultipleModelAPIView Options

Labels

By default, FlatMultipleModelAPIView adds a type property to returned items with the model name. If you want to use a custom value for the type property other than the model name, you can add a label key to your querylist dicts, like so:

from drf_multiple_model.views import FlatMultipleModelAPIView

class TextAPIView(FlatMultipleModelAPIView):
 querylist = [
 {
 'querylist': Play.objects.all(),
 'serializer_class': PlaySerializer,
 'label': 'drama',
 },
 {
 'querylist': Poem.objects.filter(style='Sonnet'),
 'serializer_class': PoemSerializer,
 'label': 'sonnet'
 },

]

which would return:

[
 {'genre': 'Comedy', 'title': "A Midsummer Night's Dream", 'pages': 350, 'type': 'drama'},
 {'genre': 'Tragedy', 'title': "Romeo and Juliet", 'pages': 300, 'type': 'drama'},

 {'title': 'Shall I compare thee to a summer's day?', 'stanzas': 1, 'type': 'sonnet'},
 {'title': 'As a decrepit father takes delight', 'stanzas': 1, 'type': 'sonnet'},

]

If you’d prefer not to add the type property to returned items, you can set the class-level field of add_model_type to False:

class TextAPIView(FlatMultipleModelAPIView):
 add_model_type = False

 querylist = [
 {'queryset': Play.objects.all(), 'serializer_class': PlaySerializer},
 {'queryset': Poem.objects.filter(style='Sonnet'), 'serializer_class': PoemSerializer},

]

which would return:

[
 {'genre': 'Comedy', 'title': "A Midsummer Night's Dream", 'pages': 350},
 {'genre': 'Tragedy', 'title': "Romeo and Juliet", 'pages': 300},

 {'title': 'Shall I compare thee to a summer's day?', 'stanzas': 1},
 {'title': 'As a decrepit father takes delight', 'stanzas': 1},

]

Note: adding a custom label to your querylist elements will always override add_model_type. However, labels are taken on an element-by-element basis, so you can add labels for some of your models/querysets, but not others.

sorting_field

By default the objects will be arranged by the order in which the querysets were listed in your querylist attribute. However, you can specify a different ordering by adding the sorting_field to your view:

class TextAPIView(FlatMultipleModelAPIView):
 sorting_field = 'title'

 querylist = [
 {'queryset': Play.objects.all(), 'serializer_class': PlaySerializer},
 {'queryset': Poem.objects.filter(style='Sonnet'), 'serializer_class': PoemSerializer},

]

would return:

[
 {'genre': 'Comedy', 'title': "A Midsummer Night's Dream", 'pages': 350, 'type': 'Play'},
 {'title': 'As a decrepit father takes delight', 'stanzas': 1, 'type': 'Poem'},
 {'genre': 'Tragedy', 'title': "Romeo and Juliet", 'pages': 300, 'type': 'Play'},
 {'title': 'Shall I compare thee to a summer's day?', 'stanzas': 1, 'type': 'Poem'},

]

As with django field ordering, add ‘-‘ to the beginning of the field to enable reverse sorting. Setting sorting_field='-title' would sort the title fields in __descending__ order.

Also, a DRF-style sorting is supported. By default it uses o parameter from request query string. sorting_parameter_name property controls what parameter to use for sorting.
Lookups are working in the django-filters style, like property_1__property_2 (which will use object’s property_1 and, in turn, its property_2 as key argument to sorted())

WARNING: the field chosen for ordering must be shared by all models/serializers in your querylist. Any attempt to sort objects along non_shared fields will throw a KeyError.

Filtering

Django Rest Framework Filters

Django Rest Frameworks default Filter Backends work out of the box. These filters will be applied to every queryset in your queryList. For example, using the SearchFilter Backend in a view:

class SearchFilterView(ObjectMultipleModelAPIView):
 querylist = (
 {'queryset': Play.objects.all(), 'serializer_class': PlaySerializer},
 {'queryset': Poem.objects.filter(style="Sonnet"), 'serializer_class': PoemSerializer},
)
 filter_backends = (filters.SearchFilter,)
 search_fields = ('title',)

accessed with a url like http://www.example.com/texts?search=as would return only the Plays and Poems with “as” in the title:

{
 'Play': [
 {'title':'As You Like It','genre':'Comedy','year':1623},
],
 'Poem': [
 {'title':"As a decrepit father takes delight",'style':'Sonnet'},
]
}

Per Queryset Filtering

Using the built in Filter Backends is a nice DRY solution, but it doesn’t work well if you want to apply the filter to some items in your queryList, but not others. In order to apply more targeted queryset filtering, DRF Multiple Models provides two technique:

Override get_querylist()

drf-multiple-model now supports the creation of dynamic queryLists, by overwriting the get_queryList() function rather than simply specifying the queryList variable. This allows you to do things like construct queries using url kwargs, etc:

class DynamicQueryView(ObjectMultipleModelAPIView):
 def get_querylist(self):
 title = self.request.query_params['play'].replace('-',' ')

 querylist = (
 {'queryset': Play.objects.filter(title=title), 'serializer_class': PlaySerializer},
 {'queryset': Poem.objects.filter(style="Sonnet"), 'serializer_class': PoemSerializer},
)

 return querylist

That view, if accessed via a url like http://www.example.com/texts?play=Julius-Caesar would return only plays that match the provided title, but the poems would be untouched:

{
 'play': [
 {'title':'Julius Caesar','genre':'Tragedy','year':1623},
],
 'poem': [
 {'title':"Shall I compare thee to a summer's day?",'style':'Sonnet'},
 {'title':"As a decrepit father takes delight",'style':'Sonnet'}
],
}

Custom Filter Functions

If you want to create a more complicated filter or use a custom filtering function, you can pass a custom filter function as an element in your querylist using the filter_fn key:

from drf_multiple_model.views import MultipleModelAPIView

def title_without_letter(queryset, request, *args, **kwargs):
 letter_to_exclude = request.query_params['letter']
 return queryset.exclude(title__icontains=letter_to_exclude)

class FilterFnView(MultipleModelAPIView):
 querylist = (
 {'queryset': Play.objects.all(), 'serializer_class': PlaySerializer, 'filter_fn': title_without_letter},
 {'queryset': Poem.objects.all(), 'serializer_class':PoemSerializer},
)

The above view will use the title_without_letter() function to filter the queryset and remove and title that contains the provided letter. Accessed from the url http://www.example.com/texts?letter=o would return all plays without the letter ‘o’, but the poems would be untouched:

{
 'play': [
 {'title':"A Midsummer Night's Dream",'genre':'Comedy','year':1600},
 {'title':'Julius Caesar','genre':'Tragedy','year':1623},
],
 'poem': [
 {'title':"Shall I compare thee to a summer's day?",'style':'Sonnet'},
 {'title':"As a decrepit father takes delight",'style':'Sonnet'},
 {'title':"A Lover's Complaint",'style':'Narrative'}
],
}

Pagination

Because Django and Rest Framework’s paginators are designed to work with a single model/queryset, they cannot simply be dropped into a MultipleModelAPIView and function properly. Currently, only Limit/Offset pagination has been ported to drf_mutliple_model, although other rest_framework paginators may be ported in the future.

Limit/Offset Pagination

Limit/Offset functions very similarly to (and with the same query parameters as) Rest Framework’s LimitOffsetPagination, but formatted to handle multiple models:

from drf_multiple_model.views import ObjectMultipleModelAPIView
from drf_multiple_model.pagination import MultipleModelLimitOffsetPagination

class LimitPagination():

class LimitPagination(MultipleModelLimitOffsetPagination):
 default_limit = 2

class ObjectLimitPaginationView(ObjectMultipleModelAPIView):
 pagination_class = LimitPagination
 querylist = (
 {'queryset': Play.objects.all(), 'serializer_class': PlaySerializer},
 {'queryset': Poem.objects.all(), 'serializer_class': PoemSerializer},
)

which would return:

{
 'highest_count': 4, # Play model has four objects in the database
 'overall_total': 7, # 4 Plays + 3 Poems
 'next': 'http://yourserver/yourUrl/?page=2',
 'previous': None,
 'results':
 {
 'Play': [
 {'genre': 'Comedy', 'title': "A Midsummer Night's Dream", 'pages': 350},
 {'genre': 'Tragedy', 'title': "Romeo and Juliet", 'pages': 300},
],
 'Poem': [
 {'title': 'Shall I compare thee to a summer's day?', 'stanzas': 1},
 {'title': 'As a decrepit father takes delight', 'stanzas': 1},
],
 }
}

This would also work with the FlatMultipleModelAPIView (with caveats, see below):

class FlatLimitPaginationView(FlatMultipleModelAPIView):
 pagination_class = LimitPagination
 querylist = (
 {'queryset': Play.objects.all(), 'serializer_class': PlaySerializer},
 {'queryset': Poem.objects.all(), 'serializer_class': PoemSerializer},
)

which would return:

{
 'highest_count': 4, # Play model has four objects in the database
 'overall_total': 7, # 4 Plays + 3 Poems
 'next': 'http://yourserver/yourUrl/?page=2',
 'previous': None,
 'results':
 [
 {'genre': 'Comedy', 'title': "A Midsummer Night's Dream", 'pages': 350},
 {'genre': 'Tragedy', 'title': "Romeo and Juliet", 'pages': 300},
 {'title': 'Shall I compare thee to a summer's day?', 'stanzas': 1},
 {'title': 'As a decrepit father takes delight', 'stanzas': 1}
]
}

Warning

Important FlatMultipleModel caveats below!

The limit in LimitOffsetPagination is applied per queryset. This means that the number of results returned is actually number_of_querylist_items * limit. This is intuitive for the ObjectMultipleModelAPIView, but the FlatMultipleModelAPIView may confuse some developers at first when a view with a limit of 50 and three different model/serializer combinations in the querylist returns a list of 150 items.

The other thing to note about MultipleModelLimitOffsetPagination and FlatMultipleModelAPIView is that sorting is done after the querylists have been filter by the limit/offset pair. To understand why this may return some internal results, imagine a project ModalA, which has 50 rows whose name field all start with ‘A’, and ModelB, which has 50 rows whose name field all start with ‘B’. If limit/offset pagination with a limit of 10 is used in a view that sorts by name, the first page will return 10 results with names that start with ‘A’ followed by 10 results that start with ‘B’. The second page with then also contain 10 results that start with ‘A’ followed by 10 results that start with ‘B’, which certainly won’t map onto a users expectation of alphabetical sorting. Unfortunately, sorting before fetching the data would likely require bypassing Django’s querysets entirely and writing raw SQL with a join on the sorting_field field, which would be difficult to integrate cleanly into the current system. It is therefore recommended that when using MultipleModelLimitOffsetPagination that sorting_field values by hidden fields like id that won’t be visible to the end user.

ViewSets

For user with ViewSets and Routers, drf-multiple-model provides the MultipleModelAPIViewSet. A simple configuration for using the provided ViewSet might look like:

from rest_framework import routers

from drf_multiple_model.viewsets import MultipleModelAPIViewSet

class TextAPIView(MultipleModelAPIViewSet):
 queryList = [
 (Play.objects.all(),PlaySerializer),
 (Poem.objects.filter(style='Sonnet'),PoemSerializer),

]

 router = routers.SimpleRouter()
 router.register('texts', TextAPIView, base_name='texts')

WARNING: Because the MultipleModel views do not provide the queryset property, you must specify the base_name property when you register a MultipleModelAPIViewSet with a router.

The MultipleModelAPIViewSet has all the same configuration options as the MultipleModelAPIView object. For more information, see the basic usage section.

Upgrading from 1.x to 2.0

drf_multiple_model went through a substantial re-write from 1.x to 2.0. Not only did much of the underlying code get re-structured and streamlined, but the classes and API changed as well. Here are some of the biggest changes developers need to be aware of.

views/mixins split in two

Earlier iterations of drf_multiple_model tried to shoehorn many different formats and functionalities into a single view/mixin. This was making development increasingly difficult, as potentially problematic interactions grew expenentionally with the number of competing options. Instead of the the single MultipleModelAPIView, you should use the following views:

	If your 1.x view had flat = True, you should use the FlatMultipleModelAPIView

	If your 1.x view had objectify = True, you should use the ObjectMultipleModelAPIView

	If your 1.x view had both flat = True and objectify = True, your view was broken and likely raised an Exception. Use one of the options above.

	If your 1.x view had neither flat = True nor objectify = True, you should reconsider and use one of the options above. The previously default response structure of list(dict(list(...) made no sense, was overly complicated to consume, and has been removed from v2.0.

querylist is no longer camelCased

The bizarrely camelCased queryList field has been renamed the much more pythonic querylist

querylist items are now dicts, not lists/tuples

If your 1.x querylist looked like this:

queryList = (
 (Poem.objects.all(), PoemSerializer),
 (Play.objects.all(), PlaySerializer),
)

your 2.0 querlist should look like this:

querylist = (
 {'queryset': Poem.objects.all(), 'serializer_class': PoemSerializer},
 {'queryset': Play.objects.all(), 'serializer_class': PlaySerializer},
)

Although this structure is slightly more verbose, is much more extensible. Consider, for example, what was needed previously in order to add a per-queryset filter function:

from drf_multiple_model.views import MultipleModelAPIView
from drf_multiple_model.mixins import Query

def my_custom_filter_fn(queryset, request, *args, **kwargs):

class FilterFnView(MultipleModelAPIView):
 queryList = (
 Query(Play.objects.all(), PlaySerializer, filter_fn=my_custom_filter_Fn),
 (Poem.objects.all(), PoemSerializer),
)

This requires importing a special Query item, and confusingly mixing types (Query object and tuple) in the querylist. With the dict querylist structure, any number of extra parameters can be added simply by adding an extra key:

querylist = (
 {'queryset': Poem.objects.all(), 'serializer_class': PoemSerializer, 'filter_fn': my_custom_filter_fn},
 {'queryset': Play.objects.all(), 'serializer_class': PlaySerializer},
)

pagination uses custom-built paginators

Pagination in 1.x used the built in rest_framework paginators, but didn’t actually restricted the items being queried; it simply formated the data after it had been fetched to remove extra items. Pagination has been re-written to only query the items request in 2.0, but this means paginators had to be re-written/extended to properly handle multiple querysets. As such, you can longer simply drop in rest_framework paginators and should only use the pagination available in drf_multiple_model.pagination. See Limit/Offset Pagination for more details.

Release Notes

2.0 (2018-01-18)

	Refactored underlying code structure and API. Changes include:

	Removed the nonsensical camelCase from querylist

	Changing querylist items from lists/tupes to dicts (for more parameter flexibility). Eliminated the underlying Query model as a result.

	Breaking the mixin into two separate mixins: ObjectMultipleModelMixing and FlatMultipleModelMixin, as well as their respective views and viewsets

	Removing the previously default response structure of list(dict(list(...)

	Adding limit/offset pagination that actually only queries the items it fetches (rather than iterating the whole queryset)

	Removing pagination functionality from the FlatMultipleModelMixin and adding it to the ObjectMultipleModelMixin

1.8.1 (2017-12-20)

	Dropped support for Django 1.8 and 1.9 (in keeping with Django Rest Framework’s support)

	Expanded test coverage for Django 1.11 and Django 2.0

1.8 (2016-09-04)

	Added objectify property to return JSON object instead of an array (implemented by @ELIYAHUT123)

	Added MultipleModelAPIViewSet for working with Viewsets (credit to Mike Hwang (@mehwang) for working out the implementation)

	implemented tox for simultaneous testing of all relevant python/django combos

	dropped support for Django 1.7 (based on Django Rest Frameworks’s concurrent lack of support)

1.7 (2016-06-09)

	Expanded documentation

	Moved to sphynx docs/readthedocs.org

	Moved data formatting to format_data() function to allow for custom post-serialization data handling

1.6 (2016-02-23)

	Incorporated and expanded on reverse sort implemented by @schweickism

1.5 (2016-01-28)

	Added support for Django Rest Framework’s pagination classes

	Custom filter functions (implemented by @Symmetric)

	Created Query class for handling queryList elements (implemented by @Symmetric)

1.3 (2015-12-10)

	Improper context passing bug fixed by @rbreu

1.2 (2015-11-11)

	Fixed a bug with the Browsable API when using Django Rest Framework >= 3.3

1.1 (2015-07-06)

	Added get_queryList() function to support creation of dynamic queryLists

1.0 (2015-06-29)

	initial release

Contributors

Project Maintainer and Founder

	Matt Nishi-Broach

Contributors

	rbreu

	Paul Tiplady <Symmetric>

	schweickism

	ELIYAHUT123

	Malcolm Box <mbox>

	Evgen Osiptsov <evgenosiptsov>

	Alexander Anikeev <iamanikeev>

Index

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 DjangoRestMultipleModels

 		
 Usage

 		
 Basic Usage

 		
 Mixins

 		
 Installation

 		
 ObjectMultipleModelAPIView Options

 		
 Labels

 		
 FlatMultipleModelAPIView Options

 		
 Labels

 		
 sorting_field

 		
 Filtering

 		
 Django Rest Framework Filters

 		
 Per Queryset Filtering

 		
 Override get_querylist()

 		
 Custom Filter Functions

 		
 Pagination

 		
 Limit/Offset Pagination

 		
 ViewSets

 		
 Upgrading from 1.x to 2.0

 		
 views/mixins split in two

 		
 querylist is no longer camelCased

 		
 querylist items are now dicts, not lists/tuples

 		
 pagination uses custom-built paginators

 		
 Release Notes

 		
 2.0 (2018-01-18)

 		
 1.8.1 (2017-12-20)

 		
 1.8 (2016-09-04)

 		
 1.7 (2016-06-09)

 		
 1.6 (2016-02-23)

 		
 1.5 (2016-01-28)

 		
 1.3 (2015-12-10)

 		
 1.2 (2015-11-11)

 		
 1.1 (2015-07-06)

 		
 1.0 (2015-06-29)

 		
 Contributors

 		
 Project Maintainer and Founder

 		
 Contributors

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

